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Abstract— Using regular perturbation analysis, we investigate
the propagation of a time-harmonic acoustic signal, generated
by a sinusoidal boundary condition, in a half-space filled with
a classical thermoviscous fluid. It is assumed that the flow is
described by a recently introduced, weakly nonlinear partial
differential equation (PDE) that, unlike earlier models, exhibits
a Hamiltonian structure in the lossless limit.

I. INTRODUCTION

In their recent article on acoustic propagation in classical
thermoviscous fluids (i.e., Newtonian fluids for which the
heat flux vector obeys Fourier’s law), Rasmussen et al. [1]
presented the latest addition to the family of equations used
to describe acoustic phenomena under the finite-amplitude
approximation. Assuming propagation in 1D along the x-
axis, this weakly nonlinear PDE, which we shall refer to
as the Rasmussen–Sørensen–Gaididei–Christiansen (or RSGC)
equation, assumes the form

(c20−φt)φxx−φtt+δφtxx = ∂t[(φx)2+c−2
0 (β− 3

2 )(φt)2]. (1)

Here, φ = φ(x, t) is the velocity potential, where u = φx

and the velocity vector is of the form v = (u(x, t), 0, 0);
the positive constants c0 and δ denote the sound speed in the
undisturbed fluid and the diffusivity of sound [2], respectively;
and β(> 1), the coefficient of nonlinearity1, is given by β =
1+B/(2A), where the ratio B/A is known as the nonlinearity
parameter [3].

Unlike its better known counterpart Kuznetsov’s equa-
tion [4], which in the present context takes the form

c20φxx − φtt + δφtxx = ∂t[(φx)2 + c−2
0 (β − 1)(φt)2], (2)

(1) admits a Hamiltonian structure in the limit δ → 0 (i.e., the
lossless limit), as do the Euler equations to which this limiting
case corresponds. Of course, because so much is known about
Hamiltonian systems, and the fact that they are amiable to
treatment by an array of analytical methods, a Hamiltonian
structure is a highly desirable property for one’s mathematical
model to possess. On the other hand, Kuznetsov’s equation and
its variants, which have been the subject of intense study for
almost forty years, exhibit a number of interesting features;

1In the case of gases, the coefficient of nonlinearity can also be expressed
as β = (γ + 1)/2, where γ(> 1) denotes the adiabatic index [3].

see, e.g., [5]. As a case in point, the well known Burgers’
equation is readily derivable from (2) by assuming, in part,
unidirectional plane wave flow; see [4], [5].

While clear differences exist between (1) and (2), it is
important to point out that both are derived from the usual
mass, momentum (i.e., Navier–Stokes), and energy conser-
vation equations, augmented with the non-isentropic, Taylor
series-based equation of state [6]

P ≈ A

[
s+

B

2A
s2 − κc−2

0 (γ − 1)∇ · v
]
, (3)

for a classical thermoviscous fluid undergoing irrotational,
compressible flow. As noted in [1], however, the lossless
version (1) is also derivable from a variational approach,
whereas the lossless version of (2) is not. Here, P is the
acoustic (or relative) pressure, s is the condensation, and the
positive constant κ denotes the thermal diffusivity. It should
also be noted that, in spite of the fact that there is no exact,
general equation of state for liquids, (3) is applicable to both
gases and liquids. The derivations of (1) and (2) are based on
both the assumption that the relative perturbations about the
equilibrium state are small, but finite, and the fact that (3) is an
analytically tractable expression for P that, while approximate,
is still able to capture the essential nonlinear physics involved.

Another PDE that we shall encounter in our investigation
is known as Stokes’ equation [7].

c20φxx − φtt + δφtxx = 0, (4)

which is the linearized version of both (1) and (2). It is of
interest to note that this equation, which is readily derived
from the linearized mass, momentum, and energy conservation
equations by neglecting the s2 term in (3), also describes the
transverse vibrations of an internally damped string [8] and
certain magnetohydrodynamic (or MHD) flows [9].

In the present article, we carry out a perturbation analysis
of (1) and (2) in the half-space x > 0 subject to the boundary
conditions (BC)s

φx(0, t) = U0 sin(Ωt), φx(∞, t) = 0 (t > 0). (5)

In the boundary-value problem (BVP) we consider, which
can be regarded as the weakly nonlinear acoustic version of
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Stokes’ second problem, the positive constants U0 and Ω de-
note the amplitude and angular frequency, respectively, of the
time-harmonic excitation applied at the boundary x = 0. Here,
it should be noted that similar perturbation studies involving
some of the various other PDEs of nonlinear acoustics can
be found in the literature; see, e.g., [10]–[13]. In particular,
the analytical approach taken here closely follows those of
Zabolotskaya et al. [12] and Jordan [13], who considered the
modified Burgers’ equation and the Darcy–Jordan poroacous-
tic model, respectively.

The primary aim of this investigation is to compare the
RSGC equation with Kuznetsov’s equation in the context of
the above-mentioned BVP. That is, we seek to understand
how the differences in these two PDEs are manifested in
their perturbation solutions. In particular, we compare/contrast
the lowest-order correction terms in both the low- and high-
frequency regimes. And, of course, the exact solution of
(4), which is also the zeroth-order term in both perturbation
solutions, is derived and analyzed.

To this end, the present article is arranged as follows. In
Sect. II, the two-term perturbation solutions of these equations,
subject to the above BCs, are determined. In Sect. III, low-
and high-frequency asymptotic expressions are derived and
numerical results are presented. Finally, in Sect. IV, a summary
is given and conclusions are stated

II. STOKES’ SECOND PROBLEM: NONLINEAR ACOUSTIC

VERSION

Re-expressing (1), (2), and the BCs given in (5) in terms of
the following nondimensional variables: φ̄ = φ/(LU0), ū =
u/U0, x̄ = x/L, and t̄ = t(c0/L), where the positive constant
L is a characteristic length, and switching to a more compact
form of notation, our BVP becomes

�φ+ λφtxx = ε{σφtφxx + [(φx)2 + f(σ)(φt)2]t},
(x, t) ∈ (0,∞) × (0,∞); (6a)

φx(0, t) = sin(ωt), φx(∞, t) = 0, (t > 0); (6b)

where �2 := ∂xx−∂tt denotes the 1D d’Alembertian operator,
ε = U0/c0 is the Mach number, ω = ΩL/c0, and λ denotes
the dimensionless diffusivity of sound. In addition, the index

σ :=

{
1, RSGC equation,

0, Kuznetsov’s equation,
(7)

and the function f(σ) = −(σ−B/A)/2 have been introduced
here for convenience; 0 < ε� 1 follows from the weakly non-
linear approximation; we observe that λ = 1/Red, where Red

denotes the Reynolds number based on δ; and all superposed
bars have been suppressed but remain understood.

With ε as the natural perturbation parameter, and recalling
that both (1) and (2) were derived under the finite amplitude
approximation, we assume a regular expansion [11], [14], [15]
correct only through O(ε); specifically, subject to ε|φ1| �
|φ0|, we set φ = φ(1), where

φ(1) := φ0 + εφ1. (8)

Substituting (8) into BVP (6) yields, after expanding and
equating like powers of ε, the following sequence of linear
PDEs:

�2φn + λ∂txxφn

=

{
0, n = 0,
σ(∂tφ0)∂xxφ0+[f(σ)(∂tφ0)2+(∂xφ0)2]t, n = 1,

(9)

which are to be solved subject to

∂xφn(0, t) =

{
sin(ωt), n = 0,
0, n = 1,

∂xφn(∞, t) = 0, (10)

successively for n = 0, 1.
Using first the substitution φ0(x, t) = 1

2 iX0(x) exp(−iωt)+
c.c., where “c.c.” denotes the complex conjugate of the preced-
ing term, the zeroth order solution, which, as noted earlier, is
the exact solution of Stokes’ equation in the setting of BVP (6),
is easily found to be

φ0 = − 1
2 iP0(ω) exp[−(α0 − iβ0)x] exp(−iωt) + c.c., (11)

where P0(ω) = (α0 − iβ0)−1 and the corresponding attenua-
tion coefficient and wavenumber are respectively given by

α0 = ω

√
−1 +

√
1 + λ2ω2

2(1 + λ2ω2)
, β0 = ω

√
1 +

√
1 + λ2ω2

2(1 + λ2ω2)
.

(12)
In turn, the first perturbation of φ0 is determined by first setting
φ1(x, t) = 1

2 iX1(x) exp(−2iωt) + c.c. and then solving the
resulting inhomogeneous ODE

X ′′
1 (1−2iλω)+4ω2X1 = ω[(1+ 1

2σ)(α0−iβ0)2−ω2f(σ)]X2
0 .

(13)
where a prime denotes d/dx. Omitting the details, it is readily
show that

φ1 = 1
2 iP1(ω){2 exp[−(α1 − iβ1)x] − (α1 − iβ1)

×P0(ω) exp[−2(α0 − iβ0)x]}e−2iωt + c.c., (14)

where

P1(ω) =
(λω + i)(α0 − iβ0)[1 + 1

2σ − ω2P 2
0 (ω)f(σ)]

4λω2(α1 − iβ1)
,

(15)

α1 = 2ω

√
−1 +

√
1 + 4λ2ω2

2(1 + 4λ2ω2)
, (16)

and

β1 = 2ω

√
1 +

√
1 + 4λ2ω2

2(1 + 4λ2ω2)
. (17)

Finally, using the defining relation u = ∂xφ, we find that

u(1)(x, t) := u0(x, t) + εu1(x, t), (18)

where

u0 = ∂xφ0 = − exp(−α0x) sin(β0x− ωt) (19)



and

u1 = ∂xφ1 = R1(ω)[e−α1x sin(β1x− 2ωt+ ψ1)
−e−2α0x sin(2β0x− 2ωt+ ψ1)]. (20)

Here,

R1(ω) = |A1 + iB1| and ψ1 = Arg(A1 + iB1), (21)

where the real and imaginary parts of A1+iB1 = 2P1(ω)(α1−
iβ1) are given by

A1 =
(1 + 1

2σ)(α0λω + β0) − f(σ)(α0λω − β0)
√

1 + λ2ω2

2λω2

and

B1 =
(1 + 1

2σ)(α0 − β0λω) − f(σ)(α0 + β0λω)
√

1 + λ2ω2

2λω2
,

and where |·| and Arg( · ) denote the modulus and the principal
value of the argument, respectively, of a complex quantity.

III. ANALYTICAL AND NUMERICAL RESULTS

A. Phase speeds and penetration depths

Along with the attenuation coefficients and wave numbers,
two other quantities are of importance in the study of waves
produced by harmonic excitations. Specifically, the phase
speeds and penetration depths, which are respectively given
here by

Vn =
ω

βn
and dn =

1
αn

(n = 0, 1). (22)

These quantities are used to characterize the structure and
behavior of the wave field over space and time. (For a
discussion of the physical significance of these quantities, see
[16], [17], respectively.)

In the next two subsection, we derive low- and high-
frequency asymptotic expressions for α0,1, β0,1, and the
quantities given in (22).

B. Low-frequency results

Suppose that ω � 1/λ. Then, using the binomial theorem,
it can be established that the attenuation coefficients and wave
numbers admit the small-ω approximations

αn ≈ 1
2λ(n+ 1)2ω2

[
1 − 1

8 (n+ 1)2(16 + λ2)ω2
]
,

βn ≈ (n+ 1)ω
[
1 − 1

8 (n+ 1)2(16 − λ2)ω2
]
, (23)

as ω → 0, for n = 0, 1. Thus, from (22) and (23) it follows
that

Vn ≈ (n+ 1)−1
[
1 + 1

8 (n+ 1)2(16 − λ2)ω2
]
,

dn ≈ 2
λ(n+ 1)2ω2

[
1 + 1

8 (n+ 1)2(16 + λ2)ω2
]
, (24)

as ω → 0, for n = 0, 1.

C. High-frequency results

Once again employing the binomial theorem, but now
under the assumption ω 	 1/λ, the corresponding large-ω
approximations are found to be

αn ≈
√
λ(n+ 1)ω

8

[
1 − 1

2λ(n+ 1)ω

]
,

βn ≈
√
λ(n+ 1)ω

8

[
1 +

1
2λ(n+ 1)ω

]
, (25)

as ω → ∞, for n = 0, 1. Thus, from (22) and (25) we find
that

Vn ≈ 2

√
2ω

λ(n+ 1)

[
1 − 1

2λ(n+ 1)ω

]
,

dn ≈ 2

√
2

λ(n+ 1)ω

[
1 +

1
2λ(n+ 1)ω

]
, (26)

as ω → ∞, for n = 0, 1.

D. Numerical results

Fig. 1 was generated based on the solution of (13) using the
software package Mathematica (version 5.2). The value of β
taken corresponds to seawater at 20◦C and 3.5% salinity [3],
while those of ε and λ were chosen based primarily on the
need to produce clear, informative graphs over the frequency
range considered. In Fig. 1 we see that the difference

Δmax(ω) := max
x>0

{|X ′
1||σ=0} − max

x>0
{|X ′

1||σ=1} (27)

clearly increases as ω is increased. This behavior appears
to be due, at least in part, to the fact that the coefficient
R1 depends on both ω and σ. On the other hand, we see
that as ω is decreased, the two curves approach each other
and start to coalesce, eventually becoming indistinguishable.
Note, however, that decreasing ω from 5.0 to 0.1 has also
caused both quantities on the right-hand side of (27) to grow
so large that, for the Mach number value taken, the primary
assumption upon which our perturbation solutions are based
is violated (see Fig. 1(c,d)).

IV. SUMMARY AND CONCLUSIONS

In this very brief study, we have carried out a regular
perturbation analysis of the RSGC equation in the context
of the acoustic version of Stokes’ second problem. We have
presented low- and high-frequency expressions, examined the
linearized problem, and compared the RSGC equation with
the classical Kuznetsov’s equation using both analytical and
numerical methods. Based on an analysis of these findings,
we report the following:

1) The presence of the thermoviscous (i.e., damping) term
δφtxx in (1) and (2) was found to have a stabilizing
effect in the sense that, while the O(ε) term in the
lossless (i.e., λ→ 0) case is secular (see [11, eqn. (14)]),
the same term in (18) is not.

2) The solutions of both (1) and (2) assume a diffusive
character for large-ω; see Sect. IIIC. Consequently,
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Fig. 1. ε|X′
1| vs. x for ε = 0.05, λ = 0.1, and β = 3.625. Solid: σ = 1.

Broken: σ = 0.

these PDEs predict that information contained in high-
frequency harmonic signals is, practically speaking,
rapidly and irreversibly lost, due to the “smoothing
property” of the diffusion equation, as such signals
propagate through classical thermoviscous fluids.

3) Since V0,1 are strictly increasing functions of ω, both (1)
and (2) predict that classical thermoviscous fluids exhibit
anomalous dispersion [16], with respect to harmonic
acoustic signals, where it should be noted that 1 > V0 >
V1 > 0 for ω > 0. (Recall: V0,1 are independent of σ.)

4) The only notable difference between (1) and (2) occurs

at higher frequencies. Specifically, Δmax(ω) increases
with increasing ω (at least over the frequency range
considered in Fig. 1). Otherwise, the behaviors of (1)
and (2) in the setting of BVP (6) appear to be all but
identical. For example, our numerical simulations also
suggest that, for ω sufficiently small,

0 ≤ |X ′
1||σ=0 − |X ′

1||σ=1 � 1 (∀x > 0). (28)

(This, of course, also suggests that Δmax is strictly non-
negative.)

5) Fig. 1(b–d) clearly illustrates that, below a certain fre-
quency, whose value likely depends on λ and/or β, both
max
x>0

{|X ′
1||σ=0} and max

x>0
{|X ′

1||σ=1} start to increase

(possibly without bound) as ω is further decreased.
Thus, within this (low-)frequency range, there is an ω-
dependent upper bound that ε must satisfy; otherwise,
the primary assumption upon which both perturbation
solutions are based is violated (see Fig. 1(d)).
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